ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
V. Kumar, Nagendra Singh Raghaw, H. S. Palsania
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 151-163
Technical Paper | doi.org/10.13182/NSE11-41
Articles are hosted by Taylor and Francis Online.
A Monte Carlo code is developed in Visual Basic 6.0 for the study of radiation damage of pure metals irradiated by a neutron spectrum. At energies <10 MeV, development of cascades of elastic interactions of both primary neutrons and secondary recoiled atoms is incorporated. In a collision, kinetic energy given to an atom below or above the threshold displacement energy Ed (eV) is calculated along with the displacements. Displacements, defect production efficiency η, and damage energy Tdam are estimated to relate to the physical changes in the irradiated metal and to estimate the displacements per atom. The code is validated by determining the defect density on the surface of irradiated thin nickel foil and comparing with the hill-hock density of displaced atoms, using atomic force microscopy. In the case of irradiation of a niobium sample, stress-strain and I-V characteristics are measured before and after the irradiation by neutrons from an Am-Be source, and both stress and electrical resistance are shown to be enhanced after the irradiation.