ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Bo Shi, Bojan Petrovic
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 138-150
Technical Paper | doi.org/10.13182/NSE11-19
Articles are hosted by Taylor and Francis Online.
The Monte Carlo method is widely used to compute the fundamental eigenfunction and eigenvalue for nuclear systems. However, the standard power iteration method computes only the fundamental eigenmode, while it would be beneficial to also compute the higher eigenfunctions and eigenvalues to support the reactor transient analysis, stability analysis, and assessments of nuclear safety, as well as to enable certain source convergence acceleration techniques. Modifications to the power method have been developed that in principle can accomplish this goal, but they typically lead to unphysical positive and negative particles requiring a procedure to compute the net-weight deposition. In this paper, we present a new mechanism that enables the Monte Carlo procedure, with certain modifications, to compute the second eigenfunction and eigenvalue for one-dimensional (1-D) problems. The method could in principle be extended to higher harmonics and general geometries. The results from numerical examples, including a 1-D, two-group, multiregion example, are consistent with reference results. Moreover, the extra computational cost of this method is of the same order of magnitude as the conventional Monte Carlo simulations. This method can be applied solely to solve for the high eigenmodes, or implemented as a part of a net-weight computation mechanism when negative particles are present in the modified power iteration method.