ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Ding She, Kan Wang, Ganglin Yu
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 127-137
Technical Paper | doi.org/10.13182/NSE11-44
Articles are hosted by Taylor and Francis Online.
In loosely coupled systems and large-scale systems, Monte Carlo criticality calculation suffers from slow fission source convergence because of the high dominance ratio (DR). In previous work, the Wielandt method and the superhistory method have been separately proposed to accelerate source convergence. However, although both methods decrease the DR, they are found not able to sufficiently accelerate fission source convergence. In this paper, the effective DR is defined and used to analyze the effectiveness of the Wielandt method and the superhistory method and to theoretically prove that they cannot reduce the computational time to converge the fission source. Accordingly, both methods are modified by adjusting the source population of inactive cycles, and their efficiency after adjustment is also compared. Moreover, the asymptotic Wielandt method (AWM) and the asymptotic superhistory method (ASM) are proposed, and the rules of deciding asymptotic parameters are also discussed. The new methods are implemented into the RMC code and validated by calculating loosely coupled problems and large-scale problems. Numerical calculation results show that AWM and ASM are practical and efficient for source convergence acceleration, which can save 75% to 90% of the computational time to reach a converged fission source.