ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Y. L. Sandler, R. H. Kunig
Nuclear Science and Engineering | Volume 64 | Number 4 | December 1977 | Pages 866-874
Technical Paper | doi.org/10.13182/NSE77-A14502
Articles are hosted by Taylor and Francis Online.
The solubility of a nickel ferrite, NixFe3-xO4, as a model substance for deposits forming on the cladding of nuclear fuel elements of pressurized water reactors is determined in aqueous solutions of primary coolant composition at different pH and hydrogen concentrations, in the temperature region from 230 to 330°C. The temperature coefficient of solubility changes from negative to positive at about pH 7 with increasing pH. The data agree reasonably well with those of Sweeton and Baes for magnetite, considering the lower iron activity in the nickel ferrite. The solubility of nickel is generally lower than that which corresponds to a congruent solution and goes through a minimum near pH 7.4. The iron solubility appears to depend on the one-third power of the hydrogen concentration in solution in the region from 20 to 100 cm3 H2/kg H2O, as expected. Preliminary results, however, indicate that at lower hydrogen concentrations, the dependence on the hydrogen concentration can decrease, possibly due to the formation of cation vacancies.