ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Masaoki Komata
Nuclear Science and Engineering | Volume 64 | Number 4 | December 1977 | Pages 811-822
Technical Paper | doi.org/10.13182/NSE77-A14496
Articles are hosted by Taylor and Francis Online.
A generalized perturbation theory is established for the surface perturbation problem in which a boundary parameter or a boundary shape is disturbed. Mainly handled is a multidimensional Sturm-Liouville-type equation and finally discussed is a multigroup diffusion model. The theory is based on Green's theorem and provides perturbation formulas that have simple forms of surface integrals and are explicitly related to a deviation of boundary parameters. The formulas are connected with a quantity within a volume through the surface Green's function. The effects of surface perturbation on a solution (a neutron flux distribution) of the equation itself, on a linear functional of direct solution, and on a ratio of linear functional of direct solution are shown. The theory is also applied to a ratio of linear functional of adjoint solution and to a ratio of bilinear functional of direct and adjoint solutions. Perturbation formulas are also derived from Pomraning's variational principle, and it is shown that the formulas are identical with those based on Green's theorem. The Lagrange multipliers used in the variational principle are explained as integrated Green's functions.