ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
M. G. Stamatelatos
Nuclear Science and Engineering | Volume 61 | Number 4 | December 1976 | Pages 543-549
Technical Note | doi.org/10.13182/NSE76-A14492
Articles are hosted by Taylor and Francis Online.
A simple yet accurate method of space-shielding cross sections in a doubly heterogeneous high-temperature gas-cooled reactor (HTGR) system using collision probabilities and rational approximations is presented. Unlike other more elaborate methods, the present method does not require point-wise cross sections that are not explicitly generated in most popular cross-section codes. Consequently, this method makes double heterogeneity space-shielding possible for cross-section codes that do not proceed via point-wise cross sections and that usually allow only for single (fuel-rod) heterogeneity cross-section space-shielding. Results of calculations based on the present method compare well with results of calculations based on more elaborate methods using pointwise cross sections. Moreover, the systematic trend of the difference between the results from the present method and those from the more elaborate methods used for comparison supports the already existent opinion that the latter methods tend to overestimate the space-shielding cross-section correction in doubly heterogeneous HTGR systems.