ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Ho Jin Park, Hyung Jin Shim, Han Gyu Joo, Chang Hyo Kim
Nuclear Science and Engineering | Volume 172 | Number 1 | September 2012 | Pages 66-77
Technical Paper | doi.org/10.13182/NSE11-22
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to present the Monte Carlo (MC) method augmented by the B1 spectrum to generate few-group diffusion theory constants, to assess their qualification in terms of the core depletion analysis, and thus to validate the MC method implemented into the Seoul National University MC code, McCARD, as a few-group diffusion theory constant generator. To do so, two-step core neutronics analyses are conducted for two types of power reactors, pressurized water reactors and very high temperature gas-cooled reactors, by the McCARD/MASTER code system in which McCARD is used as a MC few-group constant generation code and MASTER as a deterministic core analysis code. The two-step calculations for the effective multiplication factors and assembly power distributions of the two types of power reactor cores by McCARD/MASTER are compared with the reference calculations from McCARD, the nuclear design report, or measurements. By showing excellent agreement between McCARD/MASTER and the reference neutronics analyses for the two types of power reactors, it is concluded that the MC method implemented in McCARD can generate few-group diffusion theory constants that are well qualified for high-accuracy two-step core neutronics calculations.