ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Ho Jin Park, Hyung Jin Shim, Han Gyu Joo, Chang Hyo Kim
Nuclear Science and Engineering | Volume 172 | Number 1 | September 2012 | Pages 66-77
Technical Paper | doi.org/10.13182/NSE11-22
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to present the Monte Carlo (MC) method augmented by the B1 spectrum to generate few-group diffusion theory constants, to assess their qualification in terms of the core depletion analysis, and thus to validate the MC method implemented into the Seoul National University MC code, McCARD, as a few-group diffusion theory constant generator. To do so, two-step core neutronics analyses are conducted for two types of power reactors, pressurized water reactors and very high temperature gas-cooled reactors, by the McCARD/MASTER code system in which McCARD is used as a MC few-group constant generation code and MASTER as a deterministic core analysis code. The two-step calculations for the effective multiplication factors and assembly power distributions of the two types of power reactor cores by McCARD/MASTER are compared with the reference calculations from McCARD, the nuclear design report, or measurements. By showing excellent agreement between McCARD/MASTER and the reference neutronics analyses for the two types of power reactors, it is concluded that the MC method implemented in McCARD can generate few-group diffusion theory constants that are well qualified for high-accuracy two-step core neutronics calculations.