ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Florent Heidet, Ehud Greenspan
Nuclear Science and Engineering | Volume 171 | Number 1 | May 2012 | Pages 13-31
Technical Paper | doi.org/10.13182/NSE10-114
Articles are hosted by Taylor and Francis Online.
One objective of the present work is to determine the minimum burnup (BU) required to sustain a breed-and-burn (B&B) mode of operation in a large 3000-MW(thermal) sodium-cooled fast reactor core fed with depleted uranium-based metallic fuel. Another objective is to assess the feasibility of using the fuel discharged at the minimum required BU for fabricating the starter of an additional B&B core without separation of actinides and most of the solid fission products. A melt-refining process is used to remove gaseous and volatile fission products and to replace the cladding when it reaches its 200 displacements per atom radiation damage limit. Additional objectives are to assess the validity of a simplified zero-dimensional (0-D) neutron balance analysis for determination of the minimum BU required and the maximum BU attainable in a B&B mode of operation and to apply this 0-D methodology to assess the feasibility of establishing a B&B mode of operation in fast reactor cores made of different combinations of fuels, coolants, and structural materials.It is found that the minimum BU required to sustain the B&B mode in the referenced depleted uranium-fueled B&B reactor is 19.4% FIMA. The number of excess neutrons that can be generated by the fuel discharged at 19.4% FIMA is found sufficient to establish the B&B mode in another B&B core. The net doubling time for starting new B&B reactors with fuel discharged from operating B&B reactors is 12.3 yr.The minimum BU required to sustain the B&B mode of operation in alternative core designs was found to be 29% FIMA when using Pb-Bi coolant with metallic uranium fuel and 40% FIMA when using nitride fuel with sodium coolant. The B&B mode of operation cannot be established using thorium fuel and liquid-metal coolant.The results derived from the neutron balance analysis strongly depend on the value of the estimated neutron leakage probability and the fraction of neutrons lost in the reactivity control systems. A neutron balance performed using a simplified 0-D core model, although not accurate due to, primarily, inaccurate spectra predictions, provides reasonable estimates of the minimum required and the maximum attainable BUs despite the fact that its k evolution prediction is inaccurate. The 0-D approach can save much computational effort and time and is found to be useful for scoping analysis.