ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Fu-Shin Wang, Lin-Wen Hu, Chin Pan
Nuclear Science and Engineering | Volume 117 | Number 1 | May 1994 | Pages 33-46
Technical Paper | doi.org/10.13182/NSE94-A13567
Articles are hosted by Taylor and Francis Online.
Natural circulation is an important passive heat-removal mechanism in both existing and next-generation light water reactors. Thermal and stability analyses are performed for a two-phase natural circulation loop. The homogeneous equilibrium model is employed to describe the two-phase flow in the loop. Subsequently, a linear stability analysis is performed in the frequency domain to establish the stability map of a natural circulation loop. The mass flow rate increases rapidly with increasing heater power until it reaches a maximum and then decreases slowly with increasing heating power. The maximum flow rate may be obtained for a riser with length and diameter two to three times that of the heater. Stability analyses indicate that in addition to the unstable region for density-wave oscillations at high power levels, there is an unstable region at low power levels. The existence of this unstable region is supported by several experimental observations. The area of the unstable region at low power levels increases with decreasing riser diameter, with increasing riser length, and with decreasing system pressure.