ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Fu-Shin Wang, Lin-Wen Hu, Chin Pan
Nuclear Science and Engineering | Volume 117 | Number 1 | May 1994 | Pages 33-46
Technical Paper | doi.org/10.13182/NSE94-A13567
Articles are hosted by Taylor and Francis Online.
Natural circulation is an important passive heat-removal mechanism in both existing and next-generation light water reactors. Thermal and stability analyses are performed for a two-phase natural circulation loop. The homogeneous equilibrium model is employed to describe the two-phase flow in the loop. Subsequently, a linear stability analysis is performed in the frequency domain to establish the stability map of a natural circulation loop. The mass flow rate increases rapidly with increasing heater power until it reaches a maximum and then decreases slowly with increasing heating power. The maximum flow rate may be obtained for a riser with length and diameter two to three times that of the heater. Stability analyses indicate that in addition to the unstable region for density-wave oscillations at high power levels, there is an unstable region at low power levels. The existence of this unstable region is supported by several experimental observations. The area of the unstable region at low power levels increases with decreasing riser diameter, with increasing riser length, and with decreasing system pressure.