ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Surendra Mishra , R. S. Modak, S. Ganesan
Nuclear Science and Engineering | Volume 170 | Number 3 | March 2012 | Pages 280-289
Technical Paper | doi.org/10.13182/NSE10-84
Articles are hosted by Taylor and Francis Online.
Large-sized pressurized heavy water reactors (PHWRs) are neutronically loosely coupled and hence are prone to significant changes in flux shape during operation. As a result, they need a sophisticated regulation procedure based on an online flux mapping system (OFMS). During the reactor operation, neutron flux is continuously measured at certain predetermined in-core locations. The purpose of OFMS is to compute a detailed flux map at all points in the reactor, after every 2 min, by making use of the measured fluxes. The knowledge of detailed flux distribution is then used for an appropriate regulating action. The choice of computational method used by OFMS is of crucial importance because the method is expected to be both efficient and accurate and should work for a range of reactor configurations occurring during the operation. In this paper, three different methods, namely, flux synthesis, internal boundary condition, and combined least squares (CLSQ), are analyzed for their prospective use in the forthcoming 700-MW(electric) Indian PHWR. The CLSQ method is found to be most accurate, although it needs significant computation. A hybrid method that combines certain features of other methods is also studied and seems to give good accuracy with moderate computational effort.