ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The D&D of SM-1A
With the recent mobilization at the site of the former SM-1A nuclear power plant at Fort Greely, Alaska, the Radiological Health Physics Regional Center of Expertise, located at the U.S. Army Corps of Engineers’ Baltimore District, began its work toward the decommissioning and dismantlement of its third nuclear power plant, this time located just 175 miles south of the Arctic Circle.
Michael T. Wenner, Alireza Haghighat, James M. Adams, Allan D. Carlson, Steven M. Grimes, Thomas N. Massey
Nuclear Science and Engineering | Volume 170 | Number 3 | March 2012 | Pages 207-233
Technical Paper | doi.org/10.13182/NSE09-30
Articles are hosted by Taylor and Francis Online.
We have carried out a multifaceted research project to improve our knowledge of the iron nonelastic scattering cross sections. Spherical shell transmission measurements were made using time-of-flight techniques with neutrons from the 15N(p,n)15O and D(d,n)3He source reactions. For the 15N(p,n)15O work, measurements were made with a proton energy of 5.1 MeV. Measurements were made from 3 to 7-MeV deuteron energy for the D(d,n)3He work. For both source reactions, the angular range was as large as 15 to 135 deg. Two shell thicknesses were used. Comparisons are given between Monte Carlo predictions and experimental data.Utilizing a new tallying option, the estimated total iron cross sections at energies corresponding to the peak of the spectra for the 0-deg experiments were calculated to within 1% of the data in the ENDF/B-VII library. A processing code was developed to adjust ENDF format files to obtain closer agreement between measurements and calculations. Sensitivity analyses were performed at energies corresponding to the 0-deg beam angle neutrons. Using cross sections where the nonelastic and elastic cross sections were adjusted while constraining the total cross section to be constant, differences between experiment and calculation were reduced by ˜40% for a pressure vessel calculation. Such fluence calculations with adjusted cross sections indicate possible underestimation of neutron fluence, and therefore more material damage.