ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Michael T. Wenner, Alireza Haghighat, James M. Adams, Allan D. Carlson, Steven M. Grimes, Thomas N. Massey
Nuclear Science and Engineering | Volume 170 | Number 3 | March 2012 | Pages 207-233
Technical Paper | dx.doi.org/10.13182/NSE09-30
Articles are hosted by Taylor and Francis Online.
We have carried out a multifaceted research project to improve our knowledge of the iron nonelastic scattering cross sections. Spherical shell transmission measurements were made using time-of-flight techniques with neutrons from the 15N(p,n)15O and D(d,n)3He source reactions. For the 15N(p,n)15O work, measurements were made with a proton energy of 5.1 MeV. Measurements were made from 3 to 7-MeV deuteron energy for the D(d,n)3He work. For both source reactions, the angular range was as large as 15 to 135 deg. Two shell thicknesses were used. Comparisons are given between Monte Carlo predictions and experimental data.Utilizing a new tallying option, the estimated total iron cross sections at energies corresponding to the peak of the spectra for the 0-deg experiments were calculated to within 1% of the data in the ENDF/B-VII library. A processing code was developed to adjust ENDF format files to obtain closer agreement between measurements and calculations. Sensitivity analyses were performed at energies corresponding to the 0-deg beam angle neutrons. Using cross sections where the nonelastic and elastic cross sections were adjusted while constraining the total cross section to be constant, differences between experiment and calculation were reduced by ˜40% for a pressure vessel calculation. Such fluence calculations with adjusted cross sections indicate possible underestimation of neutron fluence, and therefore more material damage.