ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Michael T. Wenner, Alireza Haghighat, James M. Adams, Allan D. Carlson, Steven M. Grimes, Thomas N. Massey
Nuclear Science and Engineering | Volume 170 | Number 3 | March 2012 | Pages 207-233
Technical Paper | doi.org/10.13182/NSE09-30
Articles are hosted by Taylor and Francis Online.
We have carried out a multifaceted research project to improve our knowledge of the iron nonelastic scattering cross sections. Spherical shell transmission measurements were made using time-of-flight techniques with neutrons from the 15N(p,n)15O and D(d,n)3He source reactions. For the 15N(p,n)15O work, measurements were made with a proton energy of 5.1 MeV. Measurements were made from 3 to 7-MeV deuteron energy for the D(d,n)3He work. For both source reactions, the angular range was as large as 15 to 135 deg. Two shell thicknesses were used. Comparisons are given between Monte Carlo predictions and experimental data.Utilizing a new tallying option, the estimated total iron cross sections at energies corresponding to the peak of the spectra for the 0-deg experiments were calculated to within 1% of the data in the ENDF/B-VII library. A processing code was developed to adjust ENDF format files to obtain closer agreement between measurements and calculations. Sensitivity analyses were performed at energies corresponding to the 0-deg beam angle neutrons. Using cross sections where the nonelastic and elastic cross sections were adjusted while constraining the total cross section to be constant, differences between experiment and calculation were reduced by ˜40% for a pressure vessel calculation. Such fluence calculations with adjusted cross sections indicate possible underestimation of neutron fluence, and therefore more material damage.