ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Mathieu Hursin, Thomas J. Downar, Brendan Kochunas
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 151-167
Technical Paper | doi.org/10.13182/NSE10-75
Articles are hosted by Taylor and Francis Online.
The current state of the art in the analysis of a control rod ejection event in a pressurized water reactor (PWR) relies on homogenization methods in which the assembly-averaged power from a whole-core nodal neutronics simulator is used with some type of flux reconstruction to estimate the individual fuel rod power. Recently, there has been interest in taking advantage of methods that do not require homogenization, such as the DeCART code, to perform time-dependent neutron transport calculations. These calculations could provide not only more accurate pin power results but also intrapin power information during the transient. The work described in this paper is the analysis of a PWR control rod ejection transient using the nodal core simulator PARCS, which employs homogenization methods, and the method of characteristics (MOC) code DeCART, which treats the explicit geometry. Higher-fidelity methods such as those used by DeCART have the potential to quantify the homogenization and modeling errors inherent in the lower-order methods. The methods used in PARCS and DeCART are briefly described as well as the approach to generate the temperature feedback for the rod ejection event. The results are compared and discussed. For the considered transient scenario, PARCS and DeCART are in generally good agreement for the predicted global and local powers as well as for the temperature.