ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Kaushik Chatterjee, Mohammad Modarres
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 136-150
Technical Paper | dx.doi.org/10.13182/NSE11-27
Articles are hosted by Taylor and Francis Online.
In probabilistic safety assessments of pressurized water reactors, it is imperative to assess the potential and frequency of steam generator tube ruptures. Estimation of the frequency of steam generator tube ruptures has traditionally been based on historical occurrences, which are not applicable to new designs of steam generators with different geometries, material properties, degradation mechanisms, and thermal-hydraulic behaviors. This paper presents a new probabilistic mechanistic-based approach for estimating steam generator tube rupture frequency that is based on the principle that the failure of passive systems is governed by degradation or unfavorable conditions created through the underlying operating conditions and underlying mechanical, electrical, thermal, and chemical processes. This developed approach identifies, probabilistically models, and simulates potential degradations in new and existing steam generator designs to assess degradation versus time, until such degradation exceeds a known endurance limit. An example application of the proposed reliability prediction approach is presented for a new design of small modular reactor steam generators consisting of helically coiled tubes fabricated with advanced tube materials. This developed probabilistic physics-of-failure-based approach, when combined with probabilistic safety assessment techniques, can provide an effective tool for the evaluation of the safety and reliability of steam generators, particularly new steam generator designs used in advanced reactors.