ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Sherly Ray, R. S. Modak
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 75-86
Technical Note | doi.org/10.13182/NSE10-87TN
Articles are hosted by Taylor and Francis Online.
Numerical evaluation of the steady-state neutron flux distribution in a slightly subcritical nuclear reactor due to the presence of a fixed external source is considered by using neutron diffusion theory. It has been shown in the literature that in the particular case when keff is very close to unity (say, within 1 mk), many solution techniques face severe convergence problems. In this context, an acceleration method called Accelerated SubCritical Multiplication (ASCM), originally suggested in the well-known neutron transport code TORT, is investigated in this paper specifically for such cases. The studies are based on a realistic heavy water reactor test case analyzed by two-group diffusion theory. ASCM is found to work very well. It is useful even when the distributions of the external source and the fission source are vastly different. ASCM is based on iterative scaling of the overall flux level in the reactor. An alternative way to evaluate the “scaling factor” is discussed. A somewhat new ASCM-like scheme is suggested to accelerate the Jacobi and Gauss-Seidel iterations needed for the within-group calculations. Conditions for the effectiveness of this scheme are discussed. Implications of the present work in reactor kinetics and some other fields are indicated.