ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Heba Louis, Esmaat Amin, Moustafa Aziz, Ibrahim Bashter
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 61-65
Technical Paper | doi.org/10.13182/NSE11-11
Articles are hosted by Taylor and Francis Online.
The accelerator-driven system (ADS) is an innovative reactor that is being considered as a dedicated high-level-waste burner in a double-strata fuel cycle. (“Double-strata fuel cycle” means a partitioning and transmutation system for long-lived radioactive nuclides.) The target is the physical and functional interface between the accelerator and the subcritical reactor in the ADS, so it is probably the most innovative component of the ADS. Key parameters of ADS are the number of neutrons emitted per incident proton, the neutron multiplicity (n/p), the mean energy deposited in the target for neutrons produced, the neutron energy spectrum, and the spallation product spatial distribution. This paper focuses on the production of neutrons in the spallation reactions. The neutrons produced in the spallation reactions can be characterized by their energy and spatial distributions and multiplicity. The present calculations have been performed using the Monte Carlo code MCNPX. The Monte Carlo simulations have been performed to investigate the neutron multiplicity as a function of incident proton beam energy, as well as a function of target material and target size. Neutron flux distributions at the target surface are calculated and compared with different target materials and proton energies. A comparison of MCNPX with experimental results is made.