ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Heba Louis, Esmaat Amin, Moustafa Aziz, Ibrahim Bashter
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 61-65
Technical Paper | doi.org/10.13182/NSE11-11
Articles are hosted by Taylor and Francis Online.
The accelerator-driven system (ADS) is an innovative reactor that is being considered as a dedicated high-level-waste burner in a double-strata fuel cycle. (“Double-strata fuel cycle” means a partitioning and transmutation system for long-lived radioactive nuclides.) The target is the physical and functional interface between the accelerator and the subcritical reactor in the ADS, so it is probably the most innovative component of the ADS. Key parameters of ADS are the number of neutrons emitted per incident proton, the neutron multiplicity (n/p), the mean energy deposited in the target for neutrons produced, the neutron energy spectrum, and the spallation product spatial distribution. This paper focuses on the production of neutrons in the spallation reactions. The neutrons produced in the spallation reactions can be characterized by their energy and spatial distributions and multiplicity. The present calculations have been performed using the Monte Carlo code MCNPX. The Monte Carlo simulations have been performed to investigate the neutron multiplicity as a function of incident proton beam energy, as well as a function of target material and target size. Neutron flux distributions at the target surface are calculated and compared with different target materials and proton energies. A comparison of MCNPX with experimental results is made.