ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Megha Bhike, B. J. Roy, A. Saxena, R. K. Choudhury, S. Ganesan
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 44-53
Technical Paper | dx.doi.org/10.13182/NSE10-63
Articles are hosted by Taylor and Francis Online.
Neutron-induced reaction cross sections for the reaction 232Th(n, )233Th have been measured at neutron energies of 1.6 ± 0.03 MeV, 2.2 ± 0.03 MeV, 3.0 ± 0.03 MeV, and 3.7 ± 0.03 MeV. We have also measured cross sections for the reactions 98Mo(n, )99Mo, 186W(n, )187W, 115In(n, )116m1In, and 92Mo(n, p)92mNb at a neutron energy of 3.2 ± 0.03 MeV. The 7Li(p, n)7Be reaction was used as the neutron source with the proton beam from the 14-MV Pelletron accelerator, Mumbai, and the standard off-line gamma counting method was followed for activation measurement. The present measurements supplement the existing data and provide new data in the neutron energy range where no results are available. While the cross-section values for the 98Mo(n, )99Mo and 186W(n, )187W reactions are reported for the first time, the data for 92Mo(n, p)92mNb exists with a large discrepancy between the two available data sets. For the 115In(n, )116m1In reaction, our measurement at 3.2 MeV is an additional data point where there exists significant disagreement among the data measured by different groups. The measurements are performed relative to the 115In(n, n′)115mIn and 197 Au(n, )198 Au cross sections of International Reactor Dosimetry File 2002. Detailed theoretical calculations using the statistical model code EMPIRE-II (latest version EMPIRE-2.19) have been performed. Good agreement with the present data along with the existing data set has been obtained by suitable adjustment of the level density parameter for all the systems. The experimental and theoretical results have been compared with the recent evaluations of ENDF/B-VII.0, JENDL-4.0, and JEFF-3.1.