ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Megha Bhike, B. J. Roy, A. Saxena, R. K. Choudhury, S. Ganesan
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 44-53
Technical Paper | doi.org/10.13182/NSE10-63
Articles are hosted by Taylor and Francis Online.
Neutron-induced reaction cross sections for the reaction 232Th(n, )233Th have been measured at neutron energies of 1.6 ± 0.03 MeV, 2.2 ± 0.03 MeV, 3.0 ± 0.03 MeV, and 3.7 ± 0.03 MeV. We have also measured cross sections for the reactions 98Mo(n, )99Mo, 186W(n, )187W, 115In(n, )116m1In, and 92Mo(n, p)92mNb at a neutron energy of 3.2 ± 0.03 MeV. The 7Li(p, n)7Be reaction was used as the neutron source with the proton beam from the 14-MV Pelletron accelerator, Mumbai, and the standard off-line gamma counting method was followed for activation measurement. The present measurements supplement the existing data and provide new data in the neutron energy range where no results are available. While the cross-section values for the 98Mo(n, )99Mo and 186W(n, )187W reactions are reported for the first time, the data for 92Mo(n, p)92mNb exists with a large discrepancy between the two available data sets. For the 115In(n, )116m1In reaction, our measurement at 3.2 MeV is an additional data point where there exists significant disagreement among the data measured by different groups. The measurements are performed relative to the 115In(n, n′)115mIn and 197 Au(n, )198 Au cross sections of International Reactor Dosimetry File 2002. Detailed theoretical calculations using the statistical model code EMPIRE-II (latest version EMPIRE-2.19) have been performed. Good agreement with the present data along with the existing data set has been obtained by suitable adjustment of the level density parameter for all the systems. The experimental and theoretical results have been compared with the recent evaluations of ENDF/B-VII.0, JENDL-4.0, and JEFF-3.1.