ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Neutron Vision at Los Alamos: Exploring the Frontiers of Nuclear Materials Science
In materials science, understanding the unseen—how materials behave internally under real-world conditions—has always been key to developing new materials and accelerating innovative technologies to market. Moreover, the tools that allow us to see into this invisible world of materials have often been game-changers. Among these, neutron imaging stands out as a uniquely powerful method for investigating the internal structure and behavior of materials without having to alter or destroy the sample. By harnessing the unique properties of neutrons, researchers can uncover the hidden behavior of materials, providing insights essential for advancing nuclear materials and technologies.
Scott D. Ramsey, Gregory J. Hutchens
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 1-15
Technical Paper | doi.org/10.13182/NSE10-26
Articles are hosted by Taylor and Francis Online.
While stochastic neutron transport theories have been developed in rigorous detail, many applications have historically been investigated using the point-kinetics formulation. In this work we develop a space-dependent model using the diffusion approximation to the Pál-Bell probability generating function equation, resulting in a nonlinear analog of the conventional time-dependent neutron diffusion equation. We investigate a variety of approximate solutions for the time- and space-dependent survival probability in one-dimensional symmetric, one-speed, isotropic, delayed neutron precursor-free systems, and compare them to counterpart point-kinetics results. Following the theoretical developments, we apply the new results in the context of a criticality accident scenario, from which the importance of spatial effects is revealed.