ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
H. M. Hashemian, Wendell C. Bean
Nuclear Science and Engineering | Volume 169 | Number 3 | November 2011 | Pages 262-278
Technical Paper | dx.doi.org/10.13182/NSE10-48
Articles are hosted by Taylor and Francis Online.
Because fourth-generation (Generation IV) reactors will operate at coolant temperatures three or four times higher than light water reactors, up to ˜1000°C, they will require instrumentation and control sensors that have been qualified for these new and extreme environmental conditions. In the next 10 to 15 years, advances in sensors and transmitters for nuclear power plants (NPPs) are expected to include fiber-optic and wireless sensors. Three fiber-optic sensing technologies - single-point interferometry, distributed fiber Bragg grating, and optical counter and encoder techniques - most closely replace the functionality of the largest market fraction of conventional non-fiber-optic instrumentation currently installed in NPPs. The qualification of fiber-optic sensors for next-generation NPPs must address concerns over radiation darkening. Wireless sensor networks, typically built on the American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) ANSI/IEEE 802.11 or ANSI/IEEE 802.15.4 standards, provide NPPs with the capability to employ distributed processing, thereby increasing overall system redundancy and the potential to reduce hands-on maintenance and to improve reliability. Qualification of wireless sensors for NPPs must address concerns over security, reliability, and electromagnetic interference and radio-frequency interference. An appropriate industry standard should resolve all these concerns.