ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Sanjeev Kumar Sharma, Manoj Kansal, N. Mohan, P. K. Malhotra, S. G. Ghadge
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 222-227
Technical Paper | dx.doi.org/10.13182/NSE09-16
Articles are hosted by Taylor and Francis Online.
One of the important issues in severe reactor accident scenarios is the containment integrity and the characteristics of the source term that governs the ultimate radioactive releases to the environment. The releases are in the form of aerosols that are generated by the condensation of volatile fission products released from fuel, within the containment, during the severe accident. A loss-of-coolant accident with simultaneous failure of the emergency core cooling system has been postulated for a study of such aerosols. For the aerosol behavior in the containment, various removal mechanisms, such as gravitational settling, diffusional plate-out, and diffusiophoresis, and growth processes such as agglomerations and condensation have been included. The transport process such as leakage from the containment has also been modeled. This paper discusses the results of the studies carried out to estimate aerosols' behavior in the Tarapor Atomic Power Station (TAPS)-3&4 containment following their release during the postulated accident condition. It was found that the gravitational settling is the major aerosol removal mechanism following the postulated severe accident.