ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Keith C. Bledsoe, Jeffrey A. Favorite, Tunc Aldemir
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 208-221
Technical Paper | dx.doi.org/10.13182/NSE10-28
Articles are hosted by Taylor and Francis Online.
The differential evolution method, a powerful stochastic optimization algorithm that mimics the process of evolution in nature, is applied to inverse transport problems with several unknown parameters of mixed types, including interface location identification, source composition identification, and material mass density identification, in spherical and cylindrical radioactive source/shield systems. In spherical systems, measurements of leakages of discrete gamma-ray lines are assumed, while in cylindrical systems, measurements of scalar fluxes of discrete lines at points outside the system are assumed. The performance of the differential evolution algorithm is compared to the Levenberg-Marquardt method, a standard gradient-based technique, and the covariance matrix adaptation evolution strategy, another stochastic technique, on a variety of numerical test problems with several (i.e., three or more) unknown parameters. Numerical results indicate that differential evolution is the most adept method for finding the global optimum for these problems. In spherical geometry, differential evolution implemented serially is run-time competitive with gradient-based methods, while a parallel version of differential evolution would be run-time competitive with gradient-based techniques in cylindrical geometry. A hybrid differential evolution/Levenberg-Marquardt method is also introduced, and numerical results indicate that it can be a fast and robust optimizer for inverse transport problems.