ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Richard Sanchez, Jean Ragusa
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 133-154
Technical Paper | doi.org/10.13182/NSE10-31
Articles are hosted by Taylor and Francis Online.
An angular approximation of the transport equation based on a collocation technique results as an intermediary step in the search for a set of modified discrete ordinates (DO) equations, which eliminates ray effects. The collocation equations are similar to the DO ones with the only difference being that the scattering term is evaluated with a full Galerkin matrix instead of with the DO quadrature formula. The Galerkin quadrature offers the advantage of a better treatment of scattering anisotropy and a correct evaluation of the singular scattering associated to multigroup transport correction. However, the construction of the Galerkin matrix requires the existence of two equivalent bases in a final-dimensional representation space: an interpolatory basis to retain the collocative nature of the DO approximation and a spherical harmonic basis to represent scattering terms accurately. Up to now, the relationship between these two bases was heuristic, stemming from trial and errors. In this work we analyze the symmetries of the angular direction set and also use the factorized form of the spherical harmonics to derive a set of necessary conditions for the construction of the spherical harmonic basis. These conditions give an analytical explanation to previous heuristic techniques and fully extend them to three-dimensional geometries. We have adopted an assembling method for which extensive numerical tests show that the necessary conditions permit the construction of the Galerkin quadrature from level-symmetric, triangular, and product direction sets up to a high number of polar cosines. Our results can also be generalized to calculate Galerkin matrices for nonregular quadrature formulas. However, these necessary conditions are not sufficient, and we give numerical proof of this fact using different assembling techniques. Our assembling technique allows for the construction of Galerkin matrices from triangular direction sets (for which the DO quadrature is notoriously poor), which have positive weights for up to 44 polar cosines. In three dimensions this quadrature has 2024 angular directions and is able to exactly integrate scattering of anisotropy order 24.