ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Qingbo Wang, Jingyuan Qu, Wenkai Zhu, Baichang Zhou, Jinxing Cheng
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 287-292
Technical Note | doi.org/10.13182/NSE10-65
Articles are hosted by Taylor and Francis Online.
The radon adsorption ability of four samples of coconut shell-based activated carbons has been investigated by measuring the dynamic adsorption coefficient (DAC) of each activated carbon in a radon room. The findings obtained have shown that DACs are dramatically different even when the surface areas are near. Nitrogen adsorption and X-ray photoelectron spectroscopy analysis are used to study the microstructure of the four samples. The results have shown that micropores with diameters between 0.5 and 0.8 nm play the most important role in radon adsorption on activated carbons. Oxygen on the pore surface influences radon adsorption because of the polarity molecular adsorption on oxygen groups.