ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Qingbo Wang, Jingyuan Qu, Wenkai Zhu, Baichang Zhou, Jinxing Cheng
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 287-292
Technical Note | doi.org/10.13182/NSE10-65
Articles are hosted by Taylor and Francis Online.
The radon adsorption ability of four samples of coconut shell-based activated carbons has been investigated by measuring the dynamic adsorption coefficient (DAC) of each activated carbon in a radon room. The findings obtained have shown that DACs are dramatically different even when the surface areas are near. Nitrogen adsorption and X-ray photoelectron spectroscopy analysis are used to study the microstructure of the four samples. The results have shown that micropores with diameters between 0.5 and 0.8 nm play the most important role in radon adsorption on activated carbons. Oxygen on the pore surface influences radon adsorption because of the polarity molecular adsorption on oxygen groups.