ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Qingbo Wang, Jingyuan Qu, Wenkai Zhu, Baichang Zhou, Jinxing Cheng
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 287-292
Technical Note | doi.org/10.13182/NSE10-65
Articles are hosted by Taylor and Francis Online.
The radon adsorption ability of four samples of coconut shell-based activated carbons has been investigated by measuring the dynamic adsorption coefficient (DAC) of each activated carbon in a radon room. The findings obtained have shown that DACs are dramatically different even when the surface areas are near. Nitrogen adsorption and X-ray photoelectron spectroscopy analysis are used to study the microstructure of the four samples. The results have shown that micropores with diameters between 0.5 and 0.8 nm play the most important role in radon adsorption on activated carbons. Oxygen on the pore surface influences radon adsorption because of the polarity molecular adsorption on oxygen groups.