ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Michael L. Corradini, James P. Blanchard, Carl J. Martin
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 185-196
Technical Paper | doi.org/10.13182/NSE10-24
Articles are hosted by Taylor and Francis Online.
The occurrence of a steam explosion for advanced light water reactors (LWRs), whether within or below the reactor pressure vessel in the cavity, is analyzed to determine the possible hazard to structures as a result of dynamic explosion pressures. In current LWRs, in-vessel steam explosions have been determined not to pose a risk-significant threat, while ex-vessel explosions are considered in safety analyses. In advanced LWRs, such analyses are important to demonstrate that such structures will maintain their integrity so that core debris coolability is possible. This paper presents an approach to calculate the dynamic pressures from a steam explosion using the TEXAS-V model and evaluate its effects on surrounding structures using ANSYS. Scenarios for advanced LWRs are reviewed, and a severe accident scenario is used as an example to present our methodology. Such evaluation methods should be considered in future safety studies and be verified with direct comparison to data for energetic fuel-coolant interaction, such as those provided from past KROTOS tests or with current experiments in the international SERENA project.