ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
J. V. Donnelly
Nuclear Science and Engineering | Volume 168 | Number 2 | June 2011 | Pages 180-184
Technical Note | doi.org/10.13182/NSE10-76
Articles are hosted by Taylor and Francis Online.
MCNP applies only nuclear data tabulated at specific temperatures and does not incorporate methods for general temperature interpolation of nuclear data. However, in models representing realistic power reactor cores, it is generally necessary to represent the distribution of fuel and coolant temperatures to reliably predict detailed power distributions and reactivity feedback effects. This paper describes methods that can be easily applied for the representation of cross-section data at general temperatures, based on interpolation through mixing of nuclide representations at multiple temperatures. The discrepancies due to the interpolations have been determined to be insignificant relative to the estimated uncertainties in typical calculated eigenvalues.