ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Massimiliano Fratoni, Ehud Greenspan
Nuclear Science and Engineering | Volume 168 | Number 1 | May 2011 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE10-38
Articles are hosted by Taylor and Francis Online.
This study investigates the neutronic characteristics of the Pebble Bed-Advanced High Temperature Reactor (PB-AHTR), which combines TRISO fuel technology and liquid salt [flibe (2LiF-Be2F)] cooling. Compared to equivalent helium-cooled cores, the flibe-cooled cores feature a significantly larger fraction of neutron loss to coolant absorption but also a reduced neutron loss to leakage. The flibe also significantly contributes to neutron slowing-down and allows an increase of the pebbles' heavy metal-to-carbon volume ratio as compared to helium-cooled cores. In order to guarantee all negative reactivity coefficients, and in particular coolant void and temperature feedbacks, the carbon-to-heavy metal atom ratio must not exceed 300 to 400, depending on the fuel kernel diameter. The maximum burnup attainable from a PB-AHTR that is fueled with 10% enriched uranium and operated in continuous refueling is ˜130 GWd/t HM; this is comparable to the maximum burnup achieved in other high-temperature reactors, either liquid salt or gas cooled. Compared to helium-cooled pebble bed reactors, the PB-AHTR pebbles can be loaded with 2.5 times more fuel, resulting in a smaller number of pebbles to fabricate and a smaller spent-fuel volume to handle per energy generated. Relative to a light water reactor, the PB-AHTR offers improved natural uranium ore utilization and reduced enrichment capacity.