ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
Paul Day, Mark Cutkosky, Richard Greco, Anastasia McLaughlin
Nuclear Science and Engineering | Volume 167 | Number 3 | March 2011 | Pages 242-247
Technical Note | doi.org/10.13182/NSE10-56TN
Articles are hosted by Taylor and Francis Online.
Irradiation of polymer-based gecko-like synthetic adhesives (GSAs) using an accelerated beam of He++ ions has been performed. This irradiation simulates large radiation doses that the GSAs may experience if deployed on a robotic platform in some radiological environments. After irradiation, the adhesive samples were tested for adhesion on a three-axis adhesion testing stage and were examined via scanning electron microscope. The GSA samples showed significant changes in surface morphology at high radiation doses. Additionally, radiation doses larger than 750 kGy resulted in a significant deterioration of the adhesive performance. Eventually, the adhesive samples lost all ability to generate frictional adhesion. Such results allow us to make quantitative statements about the applicability of GSAs for robotic applications in nuclear environments.