ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
D. A. Knoll, H. Park, Kord Smith
Nuclear Science and Engineering | Volume 167 | Number 2 | February 2011 | Pages 122-132
Technical Paper | doi.org/10.13182/NSE09-75
Articles are hosted by Taylor and Francis Online.
The use of the Jacobian-free Newton-Krylov (JFNK) method within the context of nonlinear diffusion acceleration (NDA) of source iteration is explored. The JFNK method is a synergistic combination of Newton's method as the nonlinear solver and Krylov methods as the linear solver. JFNK methods do not form or store the Jacobian matrix, and Newton's method is executed via probing the nonlinear discrete function to approximate the required matrix-vector products. Current application of NDA relies upon a fixed-point, or Picard, iteration to resolve the nonlinearity. We show that the JFNK method can be used to replace this Picard iteration with a Newton iteration. The Picard linearization is retained as a preconditioner. We show that the resulting JFNK-NDA capability provides benefit in some regimes. Furthermore, we study the effects of a two-grid approach, and the required intergrid transfers when the higher-order transport method is solved on a fine mesh compared to the low-order acceleration problem.