ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Alexey Soldatov, Todd S. Palmer
Nuclear Science and Engineering | Volume 167 | Number 1 | January 2011 | Pages 77-90
Technical Paper | doi.org/10.13182/NSE09-39
Articles are hosted by Taylor and Francis Online.
To address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. This design uses 8% enriched fuel to achieve five years of operation without refueling. The specific operational conditions (lower pressure and temperature of fuel and coolant), increased enrichment of fuel, and extensive use of gadolinium burnable absorbers lead to significantly different neutron physics compared to conventional pressurized water reactors. In particular, spectrum hardening due to increased thermal neutron absorption, changes in kinetic parameters due to the isotopic content of the fresh and irradiated fuel, and fuel and control rod shadowing by burnable absorbers are consequences of the design requirements. Enhanced neutron leakage from the small MASLWR core also adds complexity. Neutron reflectors and a unique fuel-loading pattern compensate the pronounced axial and radial gradients of the neutron flux and power generation.This paper discusses the neutron physics and thermal-hydraulic issues of the core design for a small reactor with increased fuel enrichment and natural circulation of the coolant. The paper describes three evolutionary steps of the MASLWR core design process and discusses core parameters, advantages, disadvantages, and design limitations as they appeared during the core design feasibility study. The paper demonstrates the feasibility of the core design for five effective years of nonrefueled operation with 8.0% enriched UO2 fuel.