ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
I. Pázsit, A. Jonsson
Nuclear Science and Engineering | Volume 167 | Number 1 | January 2011 | Pages 61-76
Technical Paper | doi.org/10.13182/NSE10-15
Articles are hosted by Taylor and Francis Online.
The dynamic space- and frequency-dependent response of a molten salt reactor (MSR) to stationary perturbations is investigated in a simple analytical model. The Green's function of the system is investigated in the general case of arbitrary fuel recirculation velocity and in the limiting case of infinite fuel velocity, which permits closed-form solutions in both the static and dynamic cases. It is found that the amplitude of the induced noise is generally higher and the domain of the point kinetic behavior valid up to higher frequencies than in a corresponding traditional system. This is due to the differing behavior of the delayed neutron precursors as compared to the traditional case. The MSR equations are not self-adjoint and the adjoint equation and adjoint function have to be constructed, which is also done here. Finally, the space-dependent neutron noise, induced by propagating perturbations of the absorption cross section, is calculated. A number of interesting properties that are relevant to full-size MSRs are found and interpreted. The results are consistent with those in traditional systems, but the domains of various behavior regimes (point kinetic, space dependent, etc.) are shifted to higher frequencies or system sizes.