ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Pietro Mosca, Claude Mounier, Richard Sanchez, Gilles Arnaud
Nuclear Science and Engineering | Volume 167 | Number 1 | January 2011 | Pages 40-60
Technical Paper | dx.doi.org/10.13182/NSE10-10
Articles are hosted by Taylor and Francis Online.
Users' demands for multigroup transport calculations are wide and diverse, encompassing routine, rough, and fast calculations as well as very precise simulations. For these reasons, the use of accurate and efficient multigroup cross-section libraries is needed. In this work, we present an adaptive energy mesh constructor (AEMC) that builds a multigroup mesh from predefined requisites of precision and calculation time. For a given self-shielding model and number of groups, AEMC looks for the optimal bounds of a multigroup mesh that minimizes the errors of the multigroup transport solutions for a predefined set of infinite homogeneous medium problems. We have applied this methodology to define two energy meshes for fast sodium reactor applications: a 600-group mesh associated with an extension of the Livolant-Jeanpierre self-shielding method and a 1200-group mesh based on subgroup self-shielding. Tests in homogeneous media prove that the multigroup solutions are almost equivalent to Monte Carlo simulations. Simplified one-dimensional transport calculations confirm the accuracy of the 1200-group mesh and show that this mesh provides a precision similar to that obtained with the well-validated 1968-group ECCO mesh. The same tests reveal that the 600-group mesh optimized for subgroup self-shielding offers a good compromise between simulation time and precision.