ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Lei Zhu, Benoit Forget
Nuclear Science and Engineering | Volume 166 | Number 3 | November 2010 | Pages 239-253
Technical Paper | doi.org/10.13182/NSE09-84
Articles are hosted by Taylor and Francis Online.
This study describes the generalized multigroup energy treatment for the neutron transport equation. Discrete Legendre orthogonal polynomials (DLOPs) are used to expand the energy dependence of the angular flux into a set of flux moments. The leading (zeroth)-order equation is identical to a standard multigroup solution, while the higher-order equations are decoupled from each other and only depend on the leading-order solution because of the orthogonality property of the DLOPs. This decoupling leads to computational times comparable to the coarse-group calculation but provides an accurate fine-group energy spectrum. One-dimensional single-assembly and core calculations were performed to demonstrate the potential of the discrete generalized multigroup method. Computational results show that the discrete generalized multigroup method can produce an accurate fine-group whole-core solution for less computational time. A source update process is also introduced that provides improvement of integral quantities such as eigenvalue and reaction rates over the coarse-group solution.