ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
A. Hoefer, G. Dirksen, J. Eyink, E.-M. Pauli
Nuclear Science and Engineering | Volume 166 | Number 3 | November 2010 | Pages 202-217
Technical Paper | doi.org/10.13182/NSE10-09
Articles are hosted by Taylor and Francis Online.
In a level-2 probabilistic safety analysis (PSA), two types of uncertainty have to be taken into account: the uncertainty related to random variation (variability) and the uncertainty related to limited knowledge (ignorance). We present a consistent treatment of these two types of uncertainty within a Bayesian framework. This framework allows us to translate both types of uncertainty in the basic parameters into branch probability distributions of the PSA accident progression event tree (APET). This, in turn, results in probability distributions for the different release categories. A generic Monte Carlo algorithm for drawing random samples from branch probability distributions is presented, offering the possibility to directly include information in terms of empirical data. To provide an illustrative example, the developed methods are applied to a specific APET question, related to the temperature-induced rupture of the reactor coolant system in case of a high pressure accident scenario. Although this paper addresses level-2 PSA, the proposed framework is presented in a general form to be applicable to other PSA problems.