ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Scott D. Ramsey, Roy A. Axford, Gregory J. Hutchens
Nuclear Science and Engineering | Volume 166 | Number 1 | September 2010 | Pages 73-81
Technical Note | doi.org/10.13182/NSE09-63TN
Articles are hosted by Taylor and Francis Online.
Stochastic point kinetics neglecting delayed neutrons has been subject to rigorous analysis in the years since its introduction. Many approximate solutions appearing within this context are based upon the “quadratic approximation,” where fission multiplicity is truncated at two. In this technical note we review the quadratic approximation within the context of a stochastic, space-independent, one-energy-group model neglecting delayed neutrons and its generalization to higher-order approximations in transient and stationary systems. This generalization results in the probability of a zero neutron population for a source-free system being governed by transcendental and polynomial algebraic equations in the transient and infinite time limit cases, respectively. For 239Pu, we solve the transcendental equation over a wider range of prompt multiplication factors and times than has been previously accomplished. We also reproduce and generalize associated solutions of the polynomial algebraic equation. In both cases, solutions are computed for successive generalizations of the quadratic approximation to higher-order maximum fission multiplicity.