ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Scott D. Ramsey, Roy A. Axford
Nuclear Science and Engineering | Volume 166 | Number 1 | September 2010 | Pages 48-57
Technical Paper | doi.org/10.13182/NSE09-64
Articles are hosted by Taylor and Francis Online.
We implement direct and approximate local sensitivity analysis techniques within the context of stochastic point kinetics neglecting delayed neutrons and external neutron sources. After reviewing the derivation of certain probabilities that the neutron population in a nuclear assembly is exactly zero [probabilities of extinction (POEs)], we consider their dependence on physical data. We subsequently focus on fission number distribution dependence and draw comparisons between two different data sets. As various POEs are dependent upon these data through the solution of a nonlinear ordinary differential equation, local sensitivity analysis provides a useful means through which to assess the effects of data reevaluation. We first conduct this analysis generally (though approximately) using Gâteaux-derivative methodology. Following the generalized developments, exact and approximate results for 235U are presented with a discussion concerning important consequences related to criticality safety.