ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Erin D. Fichtl, James S. Warsa, Jeffery D. Densmore
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 331-341
Technical Paper | doi.org/10.13182/NSE09-51
Articles are hosted by Taylor and Francis Online.
Under some circumstances, spatial discretizations of the SN transport equation will lead to negativity in the scalar flux; therefore, negative-flux fixup schemes are often employed to ensure that the flux is positive. The nonlinear nature of these schemes precludes the use of powerful linear iterative solvers such as Krylov methods; thus, solutions are generally computed using so-called source iteration (SI), which is a simple fixed-point iteration. In this paper, we use Newton's method to solve fixed-source SN transport problems with negative-flux fixup, for which the analytic form of the Jacobian is shown to be nonsingular. It is necessary to invert the Jacobian at each Newton iteration. Generally, an exact inversion is prohibitively expensive and furthermore is not necessary for convergence of Newton's method. In the inexact Newton-Krylov method, the Jacobian is inverted using a Krylov method, which completes at some prescribed tolerance. This tolerance may be quite large in the initial stages of the Newton iteration. In this paper, we compare the use of the exact Jacobian with two approximations of the Jacobian in the inexact Newton-Krylov method. The first approximation is a finite difference approximation. The second is that used in the Jacobian-free Newton-Krylov (JFNK) method, which performs a finite difference approximation without actually generating the Jacobian itself. Numerical results comparing standard SI with the three methods demonstrate that Newton-Krylov can outperform SI, particularly for diffusive materials. The results also show that the additional level of approximation introduced by the JFNK approach does not adversely affect convergence, indicating that JFNK will be robust and efficient in large-scale applications.