ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
October 2024
Fusion Science and Technology
Latest News
From remediation to production: The DOE’s Cleanup to Clean Energy initiative
On July 28, 2023, the Department of Energy launched its Cleanup to Clean Energy initiative, an effort to repurpose underutilized DOE-owned property—portions of which were previously used in the nation’s nuclear weapons program—into the sites of clean-energy generation.
Kirill Fedorovich Raskach
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 320-330
Technical Paper | doi.org/10.13182/NSE09-47
Articles are hosted by Taylor and Francis Online.
The differential operator method is an effective Monte Carlo technique developed for calculating derivatives and perturbations. It has often been applied to eigenvalue problems. This paper extends applicability of the method to inhomogeneous problems with internal and external neutron sources. Two issues associated with these problems were considered. First of all, it was necessary to use a special technique that treats inhomogeneous problems within the framework of the neutron generation method with a constant number of neutrons per generation. This technique optimizes Monte Carlo calculations and eliminates difficulties that appear in the classical technique as the effective multiplication factor approaches unity. Furthermore, use of the technique facilitated solving the usual issue of the differential operator method associated with fission source, or more exactly total neutron source, perturbations because some modification of the approach recently proposed for eigenvalue problems could be employed. The proposed technique can be used for calculating derivatives of reaction rates with respect to neutron cross sections or material densities. Perturbations of external source and geometrical parameters were outside the scope of this work.