ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. D. Gougar, A. M. Ougouag, W. K. Terry, K. N. Ivanov
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 245-269
Technical Paper | doi.org/10.13182/NSE08-89
Articles are hosted by Taylor and Francis Online.
This paper presents a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble bed cores. The method employs PEBBED, a reactor physics code specifically designed to solve for the asymptotic burnup state of pebble bed reactors in conjunction with a genetic algorithm to obtain a core with acceptable properties. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. A novel representation of the distribution of pebbles enables efficient coupling of the burnup and neutron diffusion solvers. Complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to manipulation using modern optimization techniques. The user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. For this study, the design of two pebble bed high-temperature reactor concepts subjected to demanding physical constraints demonstrated the technique's efficacy.