ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Tejbir Singh, Updesh Kaur, Shivali Tandon, Parjit S. Singh
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 240-244
Technical Note | doi.org/10.13182/NSE09-35TN
Articles are hosted by Taylor and Francis Online.
Photon interaction (ZPIeff) and photon energy absorption (ZPEAeff) effective atomic numbers have been computed for some amino acids, namely, alanine (C3H7NO2), arginine (C6H14N4O2), aspartic acid (C4H7NO4), glycine (C2H5NO2), isoleucine (C6H13NO2), serine (C3H7NO3), and valine (C5H11NO2) in the energy range of 1 keV to 20 MeV. It has been observed that the effective atomic numbers (photon interaction and photon energy absorption) for the selected amino acid differ only in the lower-energy region (5 to 100 keV) and the maximum deviation is observed at ˜30 keV. Further, the maximum values of the effective atomic numbers for photon interaction and photon energy absorption were observed to be at different energies. For the photon interaction effective atomic number, the maximum for the selected amino acids appears at ˜5 keV, whereas the photon energy absorption effective atomic number has its maximum for the selected amino acids at ˜15 keV. Among the selected amino acids, aspartic acid shows the maximum effective atomic number, whereas the least effective atomic numbers were observed for isoleucine.