ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Tejbir Singh, Updesh Kaur, Shivali Tandon, Parjit S. Singh
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 240-244
Technical Note | doi.org/10.13182/NSE09-35TN
Articles are hosted by Taylor and Francis Online.
Photon interaction (ZPIeff) and photon energy absorption (ZPEAeff) effective atomic numbers have been computed for some amino acids, namely, alanine (C3H7NO2), arginine (C6H14N4O2), aspartic acid (C4H7NO4), glycine (C2H5NO2), isoleucine (C6H13NO2), serine (C3H7NO3), and valine (C5H11NO2) in the energy range of 1 keV to 20 MeV. It has been observed that the effective atomic numbers (photon interaction and photon energy absorption) for the selected amino acid differ only in the lower-energy region (5 to 100 keV) and the maximum deviation is observed at ˜30 keV. Further, the maximum values of the effective atomic numbers for photon interaction and photon energy absorption were observed to be at different energies. For the photon interaction effective atomic number, the maximum for the selected amino acids appears at ˜5 keV, whereas the photon energy absorption effective atomic number has its maximum for the selected amino acids at ˜15 keV. Among the selected amino acids, aspartic acid shows the maximum effective atomic number, whereas the least effective atomic numbers were observed for isoleucine.