ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
July 2023
Fusion Science and Technology
Latest News
Destruction of Ukrainian dam threatens Zaporizhzhia
A Soviet-era dam downstream from the Zaporizhzhia nuclear power plant in southeastern Ukraine collapsed last evening, causing the water level of the Kakhovka Reservoir north of the dam to drop and raising new concerns over the already jeopardized safety of the Russian-occupied nuclear facility, Europe’s largest. The reservoir supplies water for, among other things, Zaporizhzhia’s cooling systems.
Tobias Lundqvist Saleh, Staffan Jacobsson Svärd, Ane Håkansson, A. Bäcklin
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 232-239
Technical Note | doi.org/10.13182/NSE09-23TN
Articles are hosted by Taylor and Francis Online.
A tomographic technique for determination of the thermal power distribution in nuclear fuel assemblies is under development. The purpose is to provide an experimental validation tool for core simulation codes. Such codes are essential for the operation of nuclear power reactors, and validation is important in the process of improving and developing the codes as well as the fuel.The tomographic method is nonintrusive and offers large amounts of data within a normal revision shutdown. In earlier experimental investigations using a test platform, the method proved useful, demonstrating results of satisfying quality. However, the measuring setup also revealed nonfeasible properties related to transport, decontamination, and background radiation shielding.In this paper, the design of a new measuring device is presented. It is based on experiences from the test platform, but its size and weight make it advantageous regarding transports and decontamination. Moreover, the design inherently allows for more efficient background shielding.The latter has been investigated in a detailed study using the MCNP simulation code. The results confirm the high levels of background radiation observed in the test platform. It is also concluded that the shielding properties in the new design are sufficient.