ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
July 2023
Fusion Science and Technology
Latest News
Destruction of Ukrainian dam threatens Zaporizhzhia
A Soviet-era dam downstream from the Zaporizhzhia nuclear power plant in southeastern Ukraine collapsed last evening, causing the water level of the Kakhovka Reservoir north of the dam to drop and raising new concerns over the already jeopardized safety of the Russian-occupied nuclear facility, Europe’s largest. The reservoir supplies water for, among other things, Zaporizhzhia’s cooling systems.
F. Tovesson, T. S. Hill
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 224-231
Technical Paper | doi.org/10.13182/NSE09-41
Articles are hosted by Taylor and Francis Online.
The 239Pu and 241Pu neutron-induced fission cross sections have been measured from subthermal energies to 200 MeV. These measurements are part of a campaign to measure fission cross sections with high precision in support of advanced fast reactor technology. Plutonium-241 is the most active target measured in this program to date, with a half-life of 14.4 yr. The results for 239Pu are in good agreement with previous experiments and add new information to the limited knowledge on the fission cross section above 30 MeV. Discrepancies of up to 30% between the evaluations and the experimental data for 241Pu are found in the fast region, which is of particular importance for fast spectrum reactor technology, and a reevaluation of the fission cross section for this isotope is recommended.