ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
C. R. Gould, A. I. Hawari, E. I. Sharapov
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 200-209
Technical Paper | doi.org/10.13182/NSE09-48
Articles are hosted by Taylor and Francis Online.
We revisit the determination by Bowman et al. of unusual neutron transport characteristics for a newly fabricated form of graphite [Nucl. Sci. Eng., 159, 182 (2008); Nucl. Sci. Eng., 161, 68 (2009)]. From MCNP modeling and consideration of data from other experiments, we determine revised values for the neutron transport parameters of this graphite. Our reanalysis gives a coherent scattering cross section coh ˜ 4 b at 50 meV, a small-angle neutron scattering cross section sans ˜ 11 to 13 b at 1 meV, and an effective capture cross section a = 5.8 ± 0.5 mb. Scaled to a graphite reference density of 1.60 g/cm3 , we find a diffusion coefficient [overbar D] = 0.94 ± 0.03 cm and a diffusion length L = 47.7 ± 3.7 cm. Apart from the somewhat larger values of a and [overbar D], these are not untypical parameters for graphite. Based on our investigation, the recent experiments and analysis of Bowman et al. do not give evidence for different transport properties for this newly fabricated graphite.