ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Teresa S. Bailey, Jim E. Morel, Jae H. Chang
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 149-169
Technical Paper | dx.doi.org/10.13182/NSE08-66
Articles are hosted by Taylor and Francis Online.
In a previous paper, Morel and Montry used a Galerkin-based diffusion analysis to define a particular weighted diamond angular discretization for Sn calculations in curvilinear geometries. The weighting factors were chosen to ensure that the Galerkin diffusion approximation was preserved, which eliminated the discrete ordinates flux dip. It was also shown that the step and diamond angular differencing schemes, which both suffer from the flux dip, do not preserve the diffusion approximation in the Galerkin sense. In this paper we re-derive the Morel and Montry weighted diamond scheme using a formal asymptotic diffusion-limit analysis. The asymptotic analysis yields more information than the Galerkin analysis and demonstrates that the step and diamond schemes do in fact formally preserve the diffusion limit to leading order, while the Morel and Montry weighted diamond scheme preserves it to first order, which is required for full consistency in this limit. Nonetheless, the fact that the step and diamond differencing schemes preserve the diffusion limit to leading order suggests that the flux dip should disappear as the diffusion limit is approached for these schemes. Computational results are presented that confirm this conjecture. We further conjecture that preserving the Galerkin diffusion approximation is equivalent to preserving the asymptotic diffusion limit to first order.