ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Loren Roberts, Dmitriy Y. Anistratov
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 133-148
Technical Paper | doi.org/10.13182/NSE08-48
Articles are hosted by Taylor and Francis Online.
A family of nonlinear weighted flux (NWF) methods for solving the transport equation in two-dimensional (2-D) Cartesian geometry is considered. The low-order equations of these methods are defined by means of special linear-fractional factors that are determined by the high-order transport solution. An asymptotic diffusion limit analysis is performed on methods with a general weight function. The analysis revealed conditions on the weight necessary for an accurate approximation of the diffusion equation in this limit. We study methods with weights defined by linear and bilinear functions of directional cosines. As a result, we developed 2-D NWF methods formulated with the low-order equations that give rise to the diffusion equation in optically thick diffusive regions if their factors are calculated by means of the leading-order transport solution. The inherent asymptotic boundary conditions for the NWF methods are analyzed. Numerical results are presented to confirm theoretical results and demonstrate performance of the proposed methods.