ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Yunzhao Li, Hongchun Wu, Liangzhi Cao
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 163-171
Technical Paper | doi.org/10.13182/NSE11-111
Articles are hosted by Taylor and Francis Online.
The isotropic simplified spherical harmonics (SP3) method is employed to cast the neutron transport equation into a coupled set of two equations each of which shares identical mathematical form with the neutron diffusion equation. An exponential function expansion nodal (EFEN) method is presented for an arbitrary triangular grid and implemented to solve the coupled SP3 equations. The EFEN method couples adjacent nodes by defining partial currents on each interface and expanding the detailed flux distribution within each node into a sum of exponential functions to obtain a response matrix between the incoming and outgoing partial currents and a neutron balance condition for each node to obtain the nodal average flux. Numerical results demonstrate that both keff and power distributions agree well with other codes. We find comparable accuracy in most situations, and the new method appears to be faster than the other codes even in cases where EFEN requires a finer unstructured mesh.