ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Contractor selected for Belgian LLW/ILW facility
Brussels-based construction group Besix announced that is has been chosen by the Belgian agency for radioactive waste management ONDRAF/NIRAS for construction of the country’s surface disposal facility for low- and intermediate-level short-lived nuclear waste in Dessel.
Deokjung Lee, Joel Rhodes, Kord Smith
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 79-86
Technical Paper | doi.org/10.13182/NSE12-20
Articles are hosted by Taylor and Francis Online.
The huge absorption cross sections of 155Gd and 157Gd cause strong spatial shielding effects in Gd-bearing pins. A high-order depletion method has been developed for CASMO-5 to address the issue of the small depletion steps typically required for Gd-bearing fuel assemblies. In this method, the microscopic absorption reaction rates of gadolinium isotopes are assumed to be quadratic functions of the number density of 155Gd rather than the constant reaction rate assumption in the conventional predictor-corrector (PC) method. This quadratic function assumption models the variations of the spatial shielding effects over the depletion step and therefore improves the accuracy of depletion calculations with a negligible amount of calculation time increase. With this new method, a depletion step size four times larger than the step size used in a conventional PC method can be used for Gd-bearing assemblies without compromising accuracy.