ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Deokjung Lee, Joel Rhodes, Kord Smith
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 79-86
Technical Paper | doi.org/10.13182/NSE12-20
Articles are hosted by Taylor and Francis Online.
The huge absorption cross sections of 155Gd and 157Gd cause strong spatial shielding effects in Gd-bearing pins. A high-order depletion method has been developed for CASMO-5 to address the issue of the small depletion steps typically required for Gd-bearing fuel assemblies. In this method, the microscopic absorption reaction rates of gadolinium isotopes are assumed to be quadratic functions of the number density of 155Gd rather than the constant reaction rate assumption in the conventional predictor-corrector (PC) method. This quadratic function assumption models the variations of the spatial shielding effects over the depletion step and therefore improves the accuracy of depletion calculations with a negligible amount of calculation time increase. With this new method, a depletion step size four times larger than the step size used in a conventional PC method can be used for Gd-bearing assemblies without compromising accuracy.