ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Contractor selected for Belgian LLW/ILW facility
Brussels-based construction group Besix announced that is has been chosen by the Belgian agency for radioactive waste management ONDRAF/NIRAS for construction of the country’s surface disposal facility for low- and intermediate-level short-lived nuclear waste in Dessel.
A. Bhattacharya, S. D. Yu
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 60-78
Technical Paper | doi.org/10.13182/NSE12-31
Articles are hosted by Taylor and Francis Online.
This paper presents the development of comprehensive computational fluid dynamics models for unsteady flows of coolant through a string of 12 CANDU 6 fuel bundles with angular misalignments inside a pressure tube by means of large eddy simulation. The computational scheme is first validated against the numerical and experimental data available in the literature for an array of parallel rods without end plates. The converged numerical results for the 12-bundle string are then successfully obtained by utilizing 60 supercomputers and parallel processing. The computed mean and root-mean-square values of the lateral fluid forces indicate that it is necessary to model the entire fuel string in a channel to accurately quantify the unsteady flow-induced excitations.